
Galois deformation theory II

Ravi Fernando – fernando@berkeley.edu

February 14, 2018∗

1 Setup and goals
Let’s begin by recalling some setup from the last talk. We fix a finite residue field k of charac-
teristic p. A coefficient ring is a complete local noetherian ring with residue field k; morphisms
of coefficient rings must induce the identity map on k. If Λ is a coefficient ring and A is a
coefficient Λ-algebra, we let ĈΛ(A) be the category whose objects are coefficient Λ-algebras
equipped with an augmentation maps to A, and whose morphisms are commutative diagrams

Λ //

��

R //

��

A

S

??

of coefficient rings. We let CΛ(A) be the full subcategory of artinian rings in ĈΛ(A). If
Λ = W (k) or A = k (respectively the initial and final objects in the category of coefficient
rings), then we omit them from the notation, as the respective maps are redundant. For the
first half of this talk, Λ and A will just come along for the ride; for mostly unimportant peda-
gogical reasons, we will work in CΛ and ĈΛ, and we will indicate the minor changes needed to
adapt our work to the relative setting. (Eventually we will actually need to distinguish between
the absolute and relative cases.) In fact, we will soon see that we can get away with working
almost exclusively with artinian rings.

Given a p-adic Galois representation ρ, our general goal in this seminar is to turn nice in-
formation (say, modularity) about the reduction ρ into nice information about ρ itself. Since
we may only have limited information about ρ itself, our strategy is to first find some moduli
space of all deformations ρ′ of ρ, then identify a closed subscheme of “nice” deformations that
ρ is known to lie in, and then to use the geometry of this subscheme to obtain results about
these nice deformations.

Given a residual representation ρ : Π → GLN(k) and a coefficient ring Λ, we are interested in
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the deformation functor Dρ : ĈΛ → Set that associates to any coefficient Λ-algebra B the set of
strict equivalence classes of deformations of ρ to B. Given a representation ρ : Π → GLN(A),
we define Dρ : ĈΛ(A)→ Set by the same formula; in this relative situation, we are treating A
as our “residue ring”.

Note that these are covariant functors from categories of rings, which correspond to contravari-
ant functors from categories of affine (formal) schemes. Our hope is to obtain representability
results; i.e. to show that Dρ is isomorphic to the representable functor DR = Hom(R,−).

2 Categorical first steps
We first observe some obvious necessary criteria for representability. We will state these in
the “absolute” setting of CΛ and ĈΛ for convenience, but everything carries over to the relative
case without change. Suppose D = DR : ĈΛ → Set is a given representable functor. For any
A ∈ ĈΛ, we write A = lim←nA/m

n
A. The universal property of the inverse limit then gives

DR(A) = Hom(R,A)
∼→ lim
←n

Hom(R,A/mn
A) = lim

←n
DR(A/mn

A). (1)

Mazur calls any functor with this property (i.e. D(A) = lim←nD(A/mn
A)) continuous. This

notation seems a little nonstandard, since a “continuous functor” usually means one that com-
mutes with all limits. But in our context of deformations of Galois representations, it turns out
that continuity (in the weak sense) comes for free:

Proposition 1. (Continuity) Let ρ : Π → GLN(A) be a lifting of ρ to A ∈ ĈΛ. The functors
Dρ and Dρ are continuous in the sense described above.

So the functors we are interested in are completely determined by their restrictions to the
subcategory CΛ. For convenience, we will restrict all our functors to the smaller category from
now on. We will hope to obtain pro-representability results; i.e. results about representability
of a functor D : CΛ → Set by an object of the completed category ĈΛ. (I may sometimes
carelessly write “representable” when I mean “pro-representable”.)

Of course there is nothing special about inverse limits indexed by N; the universal property
implies that representable functors must commute with all limits that exist. One special case
will be particularly important to us. Suppose we have a fibered square in the category CΛ:

A×C B

zz $$
A

α
$$

B

βzz
C

Warning 1. This is a fibered product of rings, not of schemes. The tensor product has arrows
in the opposite direction. Geometrically, we’re gluing two thickenings SpecA and SpecB along
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their common closed subscheme SpecC. (Recall that Spec of any artinian coefficient ring is a
point, and similarly Spf of any not necessarily artinian coefficient ring.) Explicitly, we construct
A×C B as {(a, b) ∈ A× B : α(a) = β(b)}, with the obvious projections. One can easily verify
that this is in CΛ and that it is the fibered product in both CΛ and ĈΛ (provided that A,B,
and C are in CΛ), and similarly for CΛ(A) and ĈΛ(A), and indeed even in Ring and Set.

Warning 2. The completed category ĈΛ(A) is not closed under fibered products. For example,
consider the diagram k[[X, Y ]] → k[[X]] ←↩ k, where Y 7→ 0. The fibered product is k ⊕ Y ·
k[[X, Y ]], which is not noetherian. This problem does not appear if both maps are surjective.

If we apply a functor D : CΛ → Set to the diagram above, we get a commutative diagram

D(A×C B)

xx &&
D(A)

α
&&

D(B)

βxx
D(C)

which induces a map h : D(A ×C B) → D(A) ×D(C) D(B). (Fibered products of sets are
constructed by the same formula we gave above.) If D is representable by an object R of
ĈΛ, then the universal property of A ×C B (in ĈΛ) says that h must be a bijection. So every
(pro-)representable functor preserves fibered products.

3 The infinitesimal picture
Preserving fibered products seems like a fairly trivial necessary condition for representability,
but it is surprisingly close to being sufficient as well. To bridge the gap, we need to study some
geometry of the moduli space, namely the tangent space at its (unique) point.

Fix a coefficient Λ-algebra R, which may not be artinian. We will first define the Zariski
tangent space tR, and then attempt to recover this data from the representable functor DR.

Definition 2. The cotangent space to R is the k-vector space mR/(m
2
R + mΛ · R), and the

tangent space is its dual tR = Homk(mR/(m
2
R +mΛ ·R), k).

Note that since R is noetherian, its cotangent space is finite-dimensional and thus equals
its own double dual.

Perhaps not surprisingly, this definition can be recast in terms of the ring of dual numbers
k[ε]/(ε2) (which we will abbreviate as k[ε] from here on):

Proposition 3. There is a natural isomorphism of k-vector spaces

Homk(mR/(m
2
R +mΛ ·R), k)

∼→ HomĈΛ
(R, k[ε]). (2)
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We leave the proof as an exercise, with the hint that a Λ-algebra homomorphism from R to
k[ε] must send mR to k · ε and both m2

R and mΛ to 0. We also remark that the k-vector space
structure on the right hand is not obvious; this is about to cause us some headaches. The point
is that viewing k[ε] as k ⊕ k · ε, the k-component of the map is forced upon us, and we can
simply do pointwise addition and scalar multiplication in the k · ε component.

The right hand side of the isomorphism above is just DR(k[ε]), so we appear to have suc-
ceeded in our efforts to recover the tangent space from the functor DR. But there’s a problem:
we recovered tR only as a set; the k-vector space structure on DR(k[ε]) required getting our
hands dirty with pointwise operations on our algebra homomorphisms. We would like to recover
the tangent space as a k-vector space given nothing but the functor D = DR, in order to study
situations where representability is not known.

Let’s see what we can do to fix this. Scalar multiplication can be recovered without too much
difficulty. If we observe that k ∼= Endk−alg(k[ε]) via a↔ (x+ yε 7→ x+ ayε), then the functori-
ality of DR allows us to define scalar multiplication on HomĈΛ

(R, k[ε]) by the composition

R // k[ε] a // k[ε].

Let’s try something similar for addition. We use the homomorphism of k-algebras

k[ε]×k k[ε]
+→ k[ε] (3)

(x+ y1ε, x+ y2ε) 7→ x+ (y1 + y2)ε. (4)

Then we construct the following diagram:

D(k[ε])×D(k[ε]) D(k[ε]×k k[ε])hoo D(+)// D(k[ε])

tD × tD // tD

Here h is the map induced by the two projections k[ε] ×k k[ε] → k[ε]. This gives us a map
tD× tD → tD, if h is a bijection. This is not automatically true, so we state it as a hypothesis:

Definition 4. A functor D : CΛ → Set satisfies the tangent space hypothesis (Tk) if the map
h : D(k[ε]×k k[ε])→ D(k[ε])×D(k[ε]) is a bijection.

Remark: we are interested in deformation functors, for which D(k) is automatically a sin-
gleton set. In this case, the right-hand side of (Tk) can be rewritten as a fibered product over
D(k), which makes the hypothesis a special case of preservation of fibered products.

Now is probably a good time to say that all the preceding discussion carries over essentially
without change to the relative case. To be precise: given a functor D : CΛ(A)→ Set, assuming
the “tangent A-module hypothesis” (TA) (defined analogously to (Tk)), we can endow the set
tD,A = D(A[ε]) with the structure of an A-module, which we define to be the tangent A-module
of D. One subtlety appears when constructing the fibered product A[ε]×AA[ε] when A is not
artinian, but this is fine because the fibered product is still noetherian when both maps are
surjective.
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4 Representability criteria
Now we specialize to the absolute case, i.e. functors D : CΛ → Set. We now know three things
about pro-representable functors: they preserve fibered products, they evaluate to a singleton
set on k, and they have finite-dimensional tangent spaces. It turns out that these conditions
together are sufficient.

Theorem 1. (Grothendieck) Let D : CΛ → Set be a covariant functor such that D(k) is a
singleton set. Then D is pro-representable if and only if it preserves fibered products and the
Zariski tangent space tD,k is finite-dimensional.

This is a nice, simple criterion, but unfortunately it’s not very useful in practice. The reason
is that there are too many possible fibered product diagrams to check. Schlessinger’s theorem
refines Grothendieck’s by giving a more manageable collection of diagrams to check. Before
stating it, we fix some notation. Given a functor D and a diagram

A

α ��

B

β��
C

in CΛ, we denote the canonical map D(A×C B) → D(A)×D(C) D(B) by h. In this language,
the condition of preserving fibered products states precisely that h is a bijection for all such
diagrams.

Definition 2. We call a map A → C in CΛ small if its kernel is a principal ideal annihilated
by mA.

Theorem 3. (Schlessinger) Let D : CΛ → Set be a covariant functor with D(k) = ∗. Then D
is pro-representable if and only if the following four conditions hold:

(H1) h is surjective when A→ C is small (or equivalently when A→ C is surjective)

(H2) h is bijective if A→ C is k[ε]→ k.

(H3) Hypothesis (Tk) holds and tD,k is finite-dimensional.

(H4) h is bijective if A→ C and B → C are equal and small.

There is some redundancy here: conditions (H2) and (H4) each imply (Tk). This reflects
how important the tangent space hypothesis is: if our goal is to prove modularity lifting theo-
rems, Mazur says, (H3) is almost more important to us than actual representability. We will
also need this in the relative case, so we introduce the terminology:

Definition 4. A covariant functor D : CΛ(A)→ Set is called nearly representable if D(A) = ∗,
and it satisfies the tangent A-module hypothesis (TA) and the finiteness hypothesis

(F) : The tangent A-module tD,A is of finite type.

All absolute deformation functors we care about will turn out to satisfy (H1)− (H3). Such
functors enjoy a property that is useful even when (H4) fails. We will not use this today
(and therefore will not make it precise), but any functor D satisfying (H1) − (H3) admits a
so-called pro-representable hull, i.e. a “smooth” morphism of functors DR → D that induces an
isomorphism of tangent spaces.

5



5 Back to Galois deformations
We now turn our attention back to the Galois deformation problems that motivated us in the
beginning. Let Π be a profinite group satisfying the p-finiteness condition Φp. (Recall that
Π satisfies Φp if each finite-index open subgroup Π0 ≤ Π admits only finitely many continu-
ous homomorphisms to Z/pZ. The Galois groups GK,S satisfy this when K is a number field
and S is a finite set of primes.) Fix a coefficient ring Λ, a continuous residual representation
ρ : Π → GLN(k), and a continuous lifting ρ : Π → GLN(A) to a coefficient Λ-algebra A (not
up to strict equivalence). Then we have the absolute deformation functor Dρ : CΛ → Set and
the relative deformation functor Dρ : CΛ(A) → Set. (Recall that they are both defined on
the completed categories, but they are determined by their restrictions to the artinian subcat-
egories.)

We now record which among our zoo of properties are satisfied by Dρ and Dρ.

Proposition 1. (Representability for ρ) With the above setup, we have:

(i) The functor Dρ (restricted to CΛ) satisfies (H1), (H2), and (H3).

(ii) If ρ is absolutely irreducible, then Dρ is representable.

(Unsurprisingly, part (ii) is proved using Schlessinger’s theorem. Absolute irreducibility is
used through Schur’s lemma.)

Proposition 2. Dρ is nearly representable.

Mazur also states a weak version of this near representability result, in which A is assumed
to be artinian. This is easier to prove, and it suffices for our purposes. The (TA) part of the
assertions is not too difficult to prove; the finiteness part passes through some group cohomol-
ogy computations, which may or may not be discussed next week.

Finally, we state a connection between representability for ρ and representability for ρ. The
proof takes place entirely in the world of representations and strict equivalence classes thereof.

Proposition 3. (Absolute→ relative representability) Suppose ρ is absolutely irreducible and R
represents the functor Dρ. If A is generated as a Λ-algebra by tr ρ, then Dρ is pro-representable
by the same ring R, with augmentation R→ A induced by ρ.

Remark: if A is generated as a Λ-algebra by tr ρ as in the proposition, we call A minimal.

6 Deformation functors with conditions
We now give a brief preview of the next talk, in which we will look at deformation problems
with conditions—e.g. having a prescribed determinant or some local conditions. The moral of
the story is that if D is a representable deformation problem and D′ ⊂ D is a “reasonable”
subfunctor, then D′ will be represented by a closed sub-(formal) scheme.
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Definition 1. Suppose D : CΛ → Set is a functor, and D′ is a subfunctor; i.e. D′(A) ⊆ D(A)
for all A, and the inclusion D′ ↪→ D is a natural transformation. Suppose moreover that
D′(k) = D(k) = ∗. We say that D′ ⊂ D is a relatively representable subfunctor if for all fibered
diagrams

A

α ��

B

β��
C

in CΛ, the diagram
D′(A×C B) h //

� _

��

D′(A)×D′(C) D
′(B)

� _

��
D(A×C B) h // D(A)×D(C) D(B)

is cartesian.

Proposition 2. Suppose D′ ⊂ D is a relatively representable subfunctor. Then every condition
we care about on D implies the corresponding condition on D′: each (Hi), (Tk), near repre-
sentability, representability. Moreover, if D is representable by RD, then D′ is representable by
a quotient Λ-algebra of RD.

Next week, we will bring this back to the world of Galois deformation theory by defining
a reasonable class of “deformation conditions” that will automatically give rise to relatively
representable subfunctors.
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